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A little history

Monro (1783) Solid skull, incompressible tissue
→ Total blood volume = constant

Kellie (1824) Blood volume + cerebral CSF volume
= constant

(1970’s, 1980’s) Circuit analogy, animal models
Davson et al. (1973) Constant CSF outflow resistance

Marmarou et al. (1975) Exponential pressure-volume curve,
pressure-dependent compliance
→ Basis for current compliance models
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Derivation of model equation

I CSF volume balance dV
dt = Qinflow − Qoutflow

I Pressure-dependent outflow Qoutflow(p) = p−psss
R

I Known (often constant) inflow
Qinflow = Qproduction + Qinfusion(t)

I Baseline pressure before the infusion
Qproduction = Qoutflow(pb) = pb−psss

R
I Subtract CSF production rate, dV

dt = Qinfusion(t)− p−pb
R

I Chain rule with known compliance function
dV
dt = dV

dp
dp
dt = C(p)dp

dt
I Combining everything

C(p)dp
dt = Qinfusion(t)− p−pb

R
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Standard compliance function

I Marmarou et al. (1975): Exponential pressure-volume curve
p = pb exp(E V ) yields compliance C(p) = 1

E p = PVI
ln(10) p

I Standard compliance function used nowadays C(p) = 1
E (p−p0)

I Value and importance of reference pressure p0 unclear,
e. g. zero or pressure in superior sagittal sinus

I For constant infusion test and this compliance, there is an
analytic solution of ODE 1

E (p−p0)
dp
dt = Qinfusion − p−pb

R
I Parameters can be estimated by fitting the pressure curve to

infusion test data
I Note that E and p0 are closely linked in compliance
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Generalised compliance function

I Standard compliance function used nowadays C(p) = 1
E (p−p0)

I Parameter estimations indicate pressure-dependence of E
I Wirth & Sobey (2008) generalise compliance function

C(p) =
1

ẽ (p − p0)n =
1

ẽ(p − p0)n−1 (p − p0)
=

1
E (p) (p − p0)

from collapsing veins
I Three parameters ẽ, p0, and n for compliance
I Standard model is special case n = 1
I In general no analytic solution. Need numerical integration.
→ Parameter estimations more computationally expensive
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Standard vs. generalised compliance function I

I Variations of all five parameters (and combinations)
I Parameter estimations (method)

I Automatic: input only measured ICP, infusion rate & times
I consider only time before and during infusion
I variant of least squares minimisation
I repeat with pseudo-random initial parameter sets

I Parameter estimations (application)
I tested with artificial data sets

(n = 1, n = 0.7, n variable)
I 7 infusion tests that reach plateau pressure

(only fixed power n: 1 standard, 0.7 generalised)

Eisenträger et al. (2012)

http://imammb.oxfordjournals.org/content/early/2012/02/16/imammb.dqs001.abstract?keytype=ref&ijkey=X7ECBZx5MMAvSYN
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Standard vs. generalised compliance function II

I Both models “work”
I Different parameter sets yield

similar output → local minima
I Generalised model ill-defined for

certain parameter regions
I Workaround: Repeat with pseudo-

random initial parameter sets
I Parameters ẽ (or E ), p0 and n

I are dependent
→ neither is helpful alone

I together encode compliance C
as a function of pressure

I but only over the pressure range
of the test

Eisenträger et al. (2012)

http://imammb.oxfordjournals.org/content/early/2012/02/16/imammb.dqs001.abstract?keytype=ref&ijkey=X7ECBZx5MMAvSYN
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A little more history
Biot (1941) Consolidation Theory

= Theory of Poroelasticity
Hakim et al. (1976) First biomechanical model of brain and

CSF (as “sponge”)
Nagashima et al. (1987) Use Biot’s theory to model brain as a

poroelastic material
(1990’s, 2000’s) Various poroelastic models of

hydrocephalus development,
I often simplified geometry
I mostly pressure boundary conditions
I analytic/numerical solution
I some include pressure oscillations

Wirth & Sobey (2009) Poroelastic model of infusion test
I spherical symmetry
I flow boundary conditions incl. aqueduct
I arterial blood pressure oscillations
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Poroelastic governing equations

Fluid pressure p
Solid displacement U
Strain of solid (linearised)

E =
1
2
(
∇U +∇UT

)
Volume dilation ε = tr(E)

Combined stress (Terzaghi)

σ = σsolid + ασfluid

= (λεI + 2µE)− αpI

Conservation of momentum

∇ · σ = 0

Darcy flow through porous solid

q = −k(ε)

η
∇p

Fluid content increase

ζ :=
Vf − Vf,0

V0
= αε+ γ(p)p

Fluid volume balance

∂ζ

∂t = −∇ · q

⇒ α
∂ε

∂t +
∂

∂t

(
γ(p)p

)
= ∇ ·

(k(ε)

η
∇p
)
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Spherical symmetry
Need only 1 spatial dimension

ε =
∂u
∂r + 2u

r

(λ+ 2µ)
∂ε

∂r − α
∂p
∂r = 0

α
∂ε

∂t +
∂

∂t

(
γ(p)p

)
=

1
r2

∂

∂r

(
r2 k(ε)

η

∂p
∂r

)

skull/SAS
parenchyma

ventricle
aqueduct

Integrate:
u(r , t) =

1
r2
(∫ r

r?

s2ε(s, t)ds + r2? u?(t)

)
p(r , t) =

(λ+ 2µ)

α
ε(r , t) + pc(t)

⇒ A(p)
∂ε

∂t + B(p)
∂pc
∂t =

1
r2

∂

∂r

(
r2k(ε)

∂ε

∂r

)
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Boundary conditions
No displacement of solid at the rigid skull

u(rout) = 0

Stress continuity across ventricle wall

(radial combined stress at rin) = −p(rin, t)

Fluid volume conservation in the ventricle and at the skull
(CSF production) = (increase in ventricle volume)

+ (flow through aqueduct)
+ (flow into porous tissue)

(CSF absorbtion) = (flow through aqueduct)
+ (flow out of porous tissue)
+ (infusion)
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Extension to two fluid model
Include measured arterial blood pressure pab(t) into

I stress

σ = σsolid + ασCSF + αabσab

= (λεI + 2µE)− αpI − αabpabI

I increase in CSF content

ζ = αε+ γ(p)p − γabpab
0 5 10 15 20 25
0

50

100
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datarun0

time(min)

p
(m

m
H
g
)

Arterial blood pressure (above)
and CSF pressure (below)

yielding the equations

(λ+ 2µ)
∂ε

∂r − α
∂p
∂r = αab

∂pab
∂r = 0,

α
∂ε

∂t +
∂

∂t

(
γ(p)p

)
=

1
r2

∂

∂r

(
r2 k(ε)

η

∂p
∂r

)
+ γab

∂pab
∂t
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Results: pressure
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Results: strain, displacements, porous flow
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Space average model

I Fluid balance equation (α = 1)

∂ε

∂t +
∂

∂t

(
γ(p)p

)
=

1
r2

∂

∂r

(
r2 k(ε)

η

∂p
∂r

)
+ γab

∂pab
∂t

I Integrate over parenchyma volume Vpar =
∫ rout

rin 4πr2dr ,
combine with boundary conditions, average pressure

I Collapses to single compartment model
with arterial blood pressure oscillation

C(p̄)
dp̄
dt = Qproduction + Qinfusion(t)− Qoutflow(p̄) + Cab

dpab
dt

C(p̄) = Vpar

(dγ
dp̄ p̄ + γ(p̄)

)
Cab = Vparγab

Sobey et al. (2012)

http://www.math.ualberta.ca/ijnamb/Volume3.htm
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Other models

I Variants of compartment type models
I Oscillatory source terms (blood flow or CSF flow into spine)
I Focus on other infusion tests (e. g. constant pressure levels)
I Multi-compartment models

I Variants of poroelastic models
I different geometry, e. g. cylindrical, patient-specific
I different boundary conditions
I CSF sources/sinks in parenchyma
I Multiple-Network Poroelastic Theory (MPET)

I Viscoelastic models (only solid phase)
I various viscoelastic models (stress depends on strain-rate)
I used for Magnetic Resonance Elastography (MRE)

I Fluid-Solid-Interaction (ventricles, subarachnoid space, spine)
I Hybrid models, . . .
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Future directions

I Use compliance function rather than elasticity constant
I Better quantitative understanding of biological processes,

e. g. autoregulation, slow waves, CSF production/absorbtion
in parenchyma

I Measurements of mechanical/biological parameters
and their variance (spatially, between patients, with age, . . . ),
e. g. via MRE

I Stochastic Differential Equations?
I Multi-scale modelling
I Linking models of brain and spine

I Other ideas? Comments? Questions? . . .
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